Addendum

Journal of Fluorine Chemistry, 26 (1985) 449-456

THE HOMOGENEOUS RATE CONSTANT FOR THE RECOMBINATION OF FLUORINE ATOMS WITH F₂ AS THE THIRD BODY

W. H. BEATTIE and G. A. LAGUNA (Los Alamos, NM, U.S.A.)

Page 455, the following text should be added to the above paper, to appear before the acknowledgement.

The homogeneous recombination rate constants, k_{g} , were defined by an equation of the form,

$$-\frac{dP_F}{dt} = k_g P_F^2 P_M,$$

where P_F and P_M are the partial pressures of F-atoms and the third bodies respectively. A more correct and usual definition of the rate constant, k_g , is made by replacing k_g with $2k_g'$ to account for the fact that two F-atoms are removed for every effective collision. In order to be consistent with the usual definition, the rate constant should be reported as $k_{F_2}' = (1.8 \pm 0.7) \times 10^{14}$ cm⁶ mol⁻² s⁻¹, and the usual definitions must be used when making comparisons with literature values, as was done in the last paragraph. Our value of k_{He}' , $(1.10 \pm 0.05) \times 10^{14}$ cm⁶ mol⁻² s⁻¹, is a factor of two less than Ultee's value of $(2.18 \pm 0.4) \times 10^{14}$ cm⁶ mol⁻² s⁻¹ and our value of k_{Ar}' , $(1.05 \pm 0.35) \times 10^{14}$ cm⁶ mol⁻² s⁻¹, is substantially greater than Ganguli and Kaufman's value of $(2.9 \pm 0.2) \times 10^{13}$ cm⁶ mol⁻² s⁻¹.